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’ INTRODUCTION

The three-dimensional (3D) structure of proteins is charac-
terized by an intricate network of a large number of noncovalent
interactions. The chemically diverse amino-acidic residues have
at once enabled satisfying the functional, thermodynamic, and
kinetic features required of a protein. In spite of this complexity,
many proteins are observed to fold in a two-state-like fashion
with the (de)population of just two apparent macro-states—
folded and unfolded.1,2 This has led to the justifiable popularity
of the chemical two-state model. While it has been quite
successful in analyzing protein folding data, it fails to make any
testable predictions and lacks structural details thus limiting its
applicability. Moreover, with the identification of one-state
downhill folding proteins3�5 and those that fold over marginal
barriers6�8 it is imperative to move away from a two-state
description of the folding process. A simple but detailed model
that captures the statistical nature of folding would be ideal.
There have been, however, very few models that have lived up to
the scrutiny of the protein folding community.

Of particular interest are native-centric models of protein
folding.9�11 One such treatment is that developed by Wako and
Saitô (WS)12,13 and later independently by Mu~noz and Eaton
(ME).10 Hereby, we call it the WSME model. Instead of two
macro-states, it presents a configuration space of 2Nmicrostates,
where N is the protein length. The assumption is that these
configurations can encode for all the relevant parts of the energy
landscape. The price to pay is that the greater complexity opens

the way to two complementary approaches in dealing with the
model. The first methodology aims at reproducing the experi-
mental results as precisely as possible, and is ready to sacrifice the
formal rigor in the process. Examples of this approach are the so-
called single or double sequence approximation (SSA, DSA).
Here, the complexity of the configuration space is significantly
reduced from 2N to ∼N2 or ∼N4 by restricting it to those
configurations with just a single stretch (in SSA) or two stretches
(in DSA) of native residues, with the rest unfolded. They have
therefore been successfully used in juxtapositionwith experimental
data to quantitatively study the folding behaviors of β-hairpins,14

to predict folding rates from 3D structure,10 to identify barrier-less
transitions in BBL,3 and in the detailed analysis of the folding of
Villin headpiece domain.15 Also, this is the only accessible
approach when the WSME model is extended to account for
interactions across loops.16�18

The second approach addresses the fact that the thermody-
namics of the model can be studied without any reduction in the
configuration space. In their original paper, Wako and Saitô
implemented an exact solution (ES) calculation that enables
computing the contribution to the energetics from all possible
stretches of native residues (i.e., 2N species) based on a transfer-
matrix formalism.12,13 An exact solution to the same problem has
since been developed independently by Bruscolini and Pelizzola,19,20
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and Henry and Eaton.16 The distribution of partially structured
species and unfolded states are better captured in this approach,
and therefore it has been used to characterize the folding process of
several proteins21�32 at a semiquantitative level. Interestingly, most of
the previous studies save for that on BBL,3 have ignored energetic
contributions from solvation effects, despite the fact that a good
estimate of the solvation heat capacity change upon unfolding is
required, for instance, to reproduce the ubiquitous observation of cold
denaturation in protein thermodynamics.33�35 The reason is that it is
not trivial to estimate the solvation contributions for the innumerable
partially structured species. The exact solution has therefore always
been coupled to a very simplified formof the energy function,with the
implicit assumption that such a simple function, togetherwith a better
description of the configuration space, is sufficient to reproduce
experimental data. However, given the previous successes and the
information content that one can extract from this model, it would be
highly desirable to combine a more accurate parametrization of the
energy function to themore precise ES approach enabling a thorough
study of folding processes.

In the standard WSME model, the free-energy of each
microstate is determined by the simplest form of the Gibbs
free-energy function. In other words, it includes an enthalpic
term that is determined by the number of contacts between the
native residue pairs and an entropic cost for fixing residues in
native conformations. Both these terms are assumed to be
temperature-independent, and the entropic cost is also taken
to be sequence-independent, even if a dependence on secondary
structure has been previously considered.10 In this work, we
parametrize the WSME model adopting Freire’s empirical treat-
ments of the heat capacities of folded and unfolded states36,37 to
introduce solvation effects (labeled WSME-S with S for solva-
tion). In this novel version, the free-energy of each microstate is
similar to the standard model but includes temperature depen-
dence on both enthalpy and entropy apart from sequence-
specific entropic costs. A simple empirical formula developed
by Freire37 is employed to recast the heat capacity of any model
configuration in terms of the accessible/buried surface areas. The
surface areas are in turn estimated by invoking a correlation
between the degree of burial/exposure and the number of
contacts gained/lost to overcome the improbable time required
in calculating the surface areas of 2N species. We then employ the
WSME-S model to analyze the folding of gpW7 and R-spectrin
SH3,38 two proteins of similar size and stability but with more
than three orders of difference in the relaxation rates. Our results
predict a consistent difference in the thermodynamic and kinetic
behavior of the two proteins with gpW displaying downhill-like
characteristics while SH3 is two-state-like in very good agree-
ment with experiments. This work also highlights the importance
and advantages of a quantitative analysis with statistical models to
characterize and predict folding behaviors.

’MODEL

In this section we briefly review the WSMEmodel and outline
the changes introduced in the WSME-S to include solvation and
obtain more realistic predictions. A detailed description can be
found in the Supporting Information (SI). TheWSMEmodel is a
Go-like model9 which considers a protein as a sequence of N
aminoacids described byN binary variables, denoted bymk, k = 1,
2, ..., N. These variables are associated to three-dimensional
protein conformations in that mk takes the value 1 when the kth
residue is in a native-like conformation and 0 when it is unfolded.

The residues are independent from one another, so that a total of
2N configurations are possible; there is no intrinsic bias between
the state of any two consecutive residues, and the probability of a
configuration is determined just by its effective free-energy
derived below.

The mapping between protein conformations and model
states is such that many different partially unfolded protein
conformations are represented by the same model configuration.
This is because for each residue, the set of unfolded conforma-
tions is larger than the native one; for this reason, an entropic cost
qk > 0 is introduced for ordering a residue k. The main feature of
the model is that two amino acids interact only if they are in
contact in the native state (non-native interactions are neglected,
in the spirit of Go-like models) and if all the peptide bonds
between them are native-like (that is, the corresponding dihedral
angles φ, ψ assume their native values). The latter is a drastic
assumption which makes the model amenable to analytic treat-
ments, up to the exact solution of the equilibrium.

The effective free energy (sometimes called “effective Hamil-
tonian” in the physics literature) of the model is written as

H ¼ ∑
i < j

εi, jΔi, j
Yj

k¼ i

mk � RT ∑
N

k¼1
qkð1�mkÞ ð1Þ

where R is the gas constant and T the absolute temperature;Δ is
the contact matrix: its (i,j) element takes the value 1 if aminoacids
i and j are in contact in the native state and 0 otherwise. An
alternative common definition is to take Δi,j as the number of
contacts between heavy atoms of residues i and j. Here and in
the following, we will write ∑i<j as a short form for ∑i = 1

N�1∑j=iþ1
N .

Usually, the contact energies εi,j and the entropic parameters qk are
considered homogeneous: εi,j = ε < 0, qi = q for each i, j, even if
different choices have alsobeen considered in the literature.10,14,16,17,39

The parameter values are then fitted to reproduce some experi-
mental signal such as the fraction of folded protein or themidpoint
temperature. Despite its simplicity, the model has been shown to
correctly reproduce the main features of experimental equilibrium
and kinetics, even if only in a semiquantitative fashion. To improve
the quantitative agreement between theoretical predictions and
experimental results, we modify the model, allowing the para-
meters to be temperature dependent as presented below. To
guarantee that an exact solution is still possible, we ask that the
effective energy of the WSME-S model inherits the same structure
from WSME:

H ðm,TÞ ¼ jðTÞ þHcðm,TÞ ð2Þ
whereHc(m,T) = ∑iej hi,j(T)mi,j, with mi,jzΠk=i

j mk, and we look
for an expression of the temperature-dependent parametersj, hi,j,
that is consistent with the experimental finding on how the
interactions between residues depend on external parameters,
such as the temperature. Unfortunately, the interaction energies
are not experimental observables, and hence it is not easy to find a
phenomenological expression for them. Instead, we resort to the
phenomenological expression proposed in ref 37 for the heat
capacity of any protein conformation:

CpðTÞ ¼ c1MW þ c2BSþ c3AAP þ c4AP ð3Þ
as a function of themolecular mass (MW), the total buried surface
area (BS), the polar (AP) and apolar (AAP) accessible surface areas.
The coefficients ci� ci(T) are linear or quadratic polynomials inT
(see Supporting Information). This expression suggests that if we



5374 dx.doi.org/10.1021/ja110884m |J. Am. Chem. Soc. 2011, 133, 5372–5379

Journal of the American Chemical Society ARTICLE

are able to associate to each configurationmz {mi, i = 1, ...,N} of
the model a heat capacity C(m,T) consistent with eq 3, then by
integration of C(m,T) we will obtain an explicit expression for the
effective energy (eq 2 above), so as to have a realistic estimate of
the free-energy associated to any given configuration m. Such
C(m,T) will represent the heat capacity associated with the
excitation of all the physical degrees of freedom which are still
free when fixing the residues to their native/unfolded states (e.g.,
vibrations of covalent bonds and angles, side-chain movements,
solvent degrees of freedom, fast backbone fluctuations in the
unfolded regions, etc.). The total heat capacity, derived from the
knowledge of the effective energy (eq 2), will contain a contribution
related to C(m,T), plus a contribution from the fluctuations among
different conformations m, as we will see below.

To use eq 3, we need to estimate surface areas. This is easy
to do for the native and the fully extended denatured states, that
can be mapped to the two extremal states of the model: allmi = 1
and all mi = 0, respectively. The problem, though, is to evaluate
the surface areas of all the other configurations, both because
we lack detailed geometric information on partially folded
structures, and because their number is exponential in N. There-
fore, we introduce a key approximation that AX(m), X ={P, AP},
is linear in the number of native contacts nX

c (m) involving atoms
of type X and varies between the areas of unfolded AX(U) and
folded AX(N) species:

AXðmÞ ¼ AXðUÞ � φXn
c
XðmÞ ð4Þ

where φX is the area density per contact of type X. Then,
resorting to eqs 4 and 7�11 in ref 37 and assuming that the
buried surface area ofm is simply the portion of the total surface
area that is not exposed in configuration m, we propose the
following expression for the heat capacity of any model config-
uration:

Cðm,TÞ ¼ B0ðTÞ þ ∑
i < j

dijðTÞmi, j þ aþ bðT � T0Þ ð5Þ

which preserves the same dependence on mi,j as eq 2. Here T0 is
a reference temperature and B0(T) and dij(T) are quadratic
polynomials whose coefficients are derived from eqs 4 and
7�11 and Table 5 in ref 37. The linear term a þ b(T � T0) is
introduced to account for any experimental concentration errors
which could shift the absolute estimate of eq 5, and to account for
the difference between constant-pressure and constant-volume
heat capacity of the protein solution (see Supporting
Information).

To proceed toward eq 2 we have to calculate the enthalpy
and entropy of any configuration m, which we obtain in
the standard fashion by integrating the heat capacity:

U ðm,TÞ ¼ U ðm,T0Þ þ IðT,CÞ ð6Þ

S ðm,TÞ ¼ S ðm,T0Þ þ IðT,C=TÞ ð7Þ
where I(T,x) indicates the integral of x between T0 and T, easily
calculated from eq 5, while the integration “constants” at
T0 actually depend on the configuration m in an unknown
way. Finding an appropriate expression for such quantities is the
second crucial step in our development. To this end, we resort to
eqs 4�6 in ref 40, that relate the enthalpic difference between the
native and unfolded state ΔH(60 �C) to the solvation of polar
and apolar areas, and their entropic difference ΔS (T)) to a
solvation and a (residues-dependent) configurational term.

Inspired by those equations, and in order to preserve the same
functional dependence on the m as in eq 2, we propose the
expressions:

U ðm,T0Þ ¼ ∑
i < j

ðεΔi, j þ w0
i, jÞmi, j ð8Þ

S ðm,T0Þ ¼ ∑
N

i¼ 1
Rðqi � qBi miÞ � ∑

i < j
ðτi, j þ RQi, jÞmi, j ð9Þ

in which wi,j
0 and τi,j come from the solvation terms and qi, qi

B,Qi,j

are related to the configuration entropy term in ref 40.
In addition to those, we have introduced a WSME-like interac-
tion εΔi,j and a prefactor R for the configuration entropy, as a
correction to the above phenomenological terms, to account for
the fact that the above definitions eqs 8 and 9 are not the only
possible choice, and they are derived from approximated phe-
nomenological expressions. The combination of eqs 6 and 7 in
H (m,T) =U (m,T)� TS (m,T), yields eq 2, where the hi,j(T)
has the form of a cubic polynomial in the temperature plus a T
lnT term, whose coefficients depend on the adjustable para-
meters a, b, ε, R (see Supporting Information for details). With
the explicit knowledge of all the coefficients appearing in eq 2, we
are now in the position to study the equilibrium and kinetics
of the WSME-S model. Notice that, if we could trust completely
our construction and its approximations, and remove the four
adjustable parameters that we have introduced as corrections,
the above development and the resulting coefficients j(T),
hi,j(T) would contain no free parameter and could be applied
to any protein. In the above form, though, we need a way to fix ε,
R, a and b for each protein we study: the natural way to do so is to
fit the parameters by matching the model prediction for the heat
capacity to the experimental DSC signal for the protein con-
sidered, without baseline subtraction (the unfolded and native
baselines can be calculated a posteriori from eq 5 setting allmi = 0
or 1, respectively). Because of the nontrivial temperature-depen-
dence of the energy (eq 2), the predicted heat capacity is the sum
of two contributions, the first accounting for the average heat
capacity ÆC(m,T)æ at fixed configuration, and the second for the
average of the enthalpy fluctuations ÆΔU 2(m,T)æ due to prob-
ability fluctuations in the configuration space. Such equilibrium
averages can be exactly and efficiently calculated with the same
techniques used for the standard WSME.19,20,25

’METHODS

We characterize the equilibrium by considering the following ob-
servables besides the heat capacity: the free-energy profiles

G ðm,TÞ ¼ � RT lnð∑
m

0 e�βHcðm,TÞÞ ð10Þ

(here ∑0 indicates that the sum is restricted to the configurations with
exactly m native residues) and the probability

pi, j ¼ Æ
Yj

k¼ i

mkæ ð11Þ

of finding the region between residues i and j completely structured.
Single residue probabilities as reported in Figure 2C and Figure 2F are a
particular case of the latter equation with i = j. The fraction of secondary
structure content is estimated from the residue probabilities, in con-
junction with the available secondary structure assignment of the PDB
structures.
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Folding and unfolding kinetics are studied performing T-jumps to
different final temperatures, either from 430 K (for the folding case) or
240 K (for the unfolding). The evolution is simulated either by Monte
Carlo (MC) dynamics or by a one-dimensional master equation for the
probabilities along the reaction coordinate m = ∑imi, with rates dictated
by the free energy profiles G (m,T). In the former case, an individual
residue flip between 0 and 1 is accepted according to a standard
Metropolis criterion on the change in the effective energy Hc(m,T).
Initial configurations are sampled from the equilibrium distribution at
the initial temperature; then, single-molecule evolutions are generated at
the final temperature. Groups of 400 trajectories are averaged to obtain
the ensemble signal p(t) z ÆN�1∑i = 1

N mi(t)æ, that is fitted with one- or
two-exponential functions (the latter usually giving the best results):

pðtÞ ¼ p¥ þ a1 e
�k1 t þ a2 e

�k2 t ð12Þ
where p¥ is calculated resorting to the equilibrium averages Æmi(tf¥)æ =
pi,i defined in eq 11. The process is repeated 10 times, to estimate average
and errors on rates and amplitudes. The second approach resorts to writing
a master equation from a diffusion equation for the probabilities f(m,t),
following the lines of eqs A3 and A5 of ref 41, with a diffusion coefficient D
independent ofm. The system is prepared in the equilibrium distribution at
the initial temperature, and at t = 0 the temperature is set to the final one.
The evolution of the quantity p(t) = ∑m = 0

N mf(m,t) is followed, and then
fitted to the single or double exponential functions above. Experimental
amplitudes corresponding to small T-jumps (between T and Tþ ΔT) are
predicted as the derivatives of the simulated slow phase amplitudes.

’RESULTS AND DISCUSSION

Equilibrium. The WSME-S model has just four adjustable
parameters (see Model), that are obtained from a direct least-
squares fit of the model heat capacity function to the experi-
mental thermogram (without baseline subtraction). It repro-
duces the thermograms of both proteins quite accurately and is of
comparable quality to a 6-parameter two-state fit (Figure 1). The
predicted folded and unfolded baselines for SH3 coincide with
those that could be estimated a priori from linear extrapolations
of the experimental pre- and post-transition baselines. The
behavior is quite different for gpW which has the same peak

temperature as SH3 but only a slightly broader thermogram. The
folded and unfolded baselines are slightly downshifted and cannot
be guessed from an inspection of the experimental thermogram.
As heat capacity is a measure of energy fluctuations,42,43 this
immediately suggests that gpW presents a great plasticity under all
conditions, sampling several conformations even at the lowest
accessible temperatures, which yields an extra contribution to the
heat capacity on top of the native baseline. The presence of large
conformational fluctuations in the native-ensemble of gpW has
also been predicted previously from aGo-model analysis.44On the
contrary, the ability to identify a clear pre-transition region for SH3
hints at a two-state like behavior with minor residual fluctuations.
It is important to note that both proteins have similar sizes (58 and
57 residues for gpW and SH3, respectively) and accessible surface
areas (4037 and 3866 Å2) thus factoring out their contribution in
this comparison. The stark differences in experimental thermo-
grams, predicted baselines, and hence in conformational fluctua-
tions suggest different folding mechanisms at work in these
systems. Notice that the standard WSME model, upon the
addition of independently estimated baselines, can reproduce
the thermograms reasonably well (Figure S5 in Supporting
Information), but is not able to reach the same level of quantitative
agreement as WSME-S; this is especially true for the gpW case.
This in turn affects themagnitude of the predicted barriers as small
differences in widths of thermograms translate to large differences
in barriers. In other words, to estimate barriers from DSC
experiments the fit has to be perfect. In more detail, we observe
that the heat capacity of the standard model (with constant
parameters ε, q) at very low and very high temperatures, when
the configurational fluctuations fade out, is zero. The larger heat
capacity of the unfolded states is therefore not captured well by the
standard model (note the difference between experimental high-
temperature heat capacity curve and the fit in Supporting Informa-
tion, Figure S5B for SH3) due to the lack of solvation terms. This
also implies that the baselines must be estimated directly from the
experimental signal (as in Supporting Information, Figure S5),
which is a very difficult task for gpW, for the reasons discussed
above. Both these issues are directly addressed in the WSME-S
model thus making it superior to earlier versions.
The rich conformational behavior of gpW is further confirmed

by the predicted free-energy profiles (Figure 2A and Figure 2D).
SH3 conforms to a two-state approximation, with a pronounced
barrier at all temperatures, a substantially fixed unfolded mini-
mum and a weak shift of the barrier position according to the
Hammond postulate. On the other hand, gpW profiles present
three minima separated by two small bumps of less than 1.5RT;
either barrier becomes a shoulder at low or high temperatures,
and there is a pronounced shift of the unfolded minimum
between less andmore structured configurations. In other words,
gpW presents a weak three-state like behavior that is in fact
compatible with downhill folding especially at temperatures
either side of the midpoint, in agreement with previous experi-
mental observations.7 Even if a one-dimensional projection does
not guarantee a faithful description of the real free-energy
topography a priori, a 7-fold ratio of the barriers at Tm of the
two proteins should be reflected in the rates (see below).
The possibility of calculating exactly the probability that residue

i is native at a given temperature is exploited to make quantitative
predictions on which parts of the proteins unfold first (Figure 2C
and Figure 2F). In both proteins there are regions, typically at the
N- and C-termini, that are little structured at all temperatures; and
regions that are likely to preserve some structure even at high

Figure 1. Fits (continuous lines) to the experimental DSC thermo-
grams (circles) of gpW (A) and SH3 (B). The predicted native (N) and
unfolded (U) baselines are also shown.
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temperatures, as for instance the Proline-rich helical turn before
strand 5 of SH3. In SH3 most of the signals can be superimposed
almost perfectly, while a great heterogeneity of behaviors is found
for gpW.Most importantly, a clear hallmark of cooperativity can be
found for SH3 by looking at the midpoint temperature for the
individual probabilities, defined as the position of the peak in the
first derivative of the signal. Independent of the degree of structure
at low or high temperatures, theirTm are spreadwithin 1.5 K around
themeanTm, pointing toward a collective unfolding of all residues in
the protein. On the contrary, individual residues in gpW behave
quite independently from one another, and the spread in their
midpoint temperatures is around 11 K (see Supporting Information
Figure S3), something that can in principle be tested by performing
an atom-by-atom analysis using NMR techniques.45 The consis-
tency between the magnitude of barriers and the spread in melting
temperatures supports the use of multiprobe experiments to
distinguish between folding mechanisms.45,46

The recent experimental study on gpW unfolding7 points to
∼5 K difference in Tm when monitored by fluorescence (335 K)
and far-UV CD (340 K), two different spectroscopic probes that
report on the environment around tyrosine and the secondary
structure content, respectively. Figure 3A plots the fraction
of secondary structure as a function of temperature as predicted
by the model. The loss of helical secondary structure can be
approximated as a predictor of the far-UV CD signal at 222 nm,
the derivative of which agrees nicely with the experimental
estimate of 340 K (Figure 3B). Moreover, it is possible to
reproduce the lower midpoint temperature of 335 K for tyrosine
46 from just the residue probability. The ability of the model to
predict spectroscopic observables that were not used in the fitting
procedure further highlights the robustness of the method.
Single-Molecule Behavior. Using the parameters obtained

from the fit to the DSC data, we simulate the relaxation kinetics
after a temperature-jump (see Methods). Figure 4 reports
representative single-molecule trajectories after a simulated
T-jump to different final temperatures both in terms of the
average behavior (Figure 4A�C) and at the residue-level
(Figure 4D�F). Though single-molecule trajectories can differ

significantly from one another in the same experimental condi-
tions, Figure 4 clearly suggests the succession of the unfolding
events, and the parts of the protein involved.We can see that after
a T-jump the average fraction of native residues shifts from the
native basin (∼50 native residues) to an intermediate value (∼40
residues). Then, after a stochastic unfolding time, the system
reaches the unfolded state, whose amount of residual structure
strongly depends on the temperature, as expected from the free-
energy profiles (see Figure 2). Moreover, the conformational
behavior before unfolding is strongly temperature-dependent: at
Tm = 340 K there is a pre-equilibration with frequent oscillations

Figure 2. Equilibrium behavior of gpW (upper row) and SH3 (lower row). (A, D) The 1D free-energy surfaces at different temperatures of 301�381 K
in steps of 20 K (dark blue to dark red; the surfaces in green correspond to the Tm). (B, E) Native structures of gpW and SH3. (C, F) Residue unfolding
probabilities colored according to the secondary structure and sequence location.

Figure 3. Predicting spectroscopic signals of gpW folding. (A) Tem-
perature dependence of the secondary structure content from themodel.
(B) First derivative of the melting curves from the model compared to
the experimental midpoint temperature (vertical lines) from fluores-
cence of tyrosine 46 (dashed curves) and far-UV CD at 222 nm that
monitors the helical content (continuous curve).
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between the native and intermediate fractions and at T = 330
these two states appear as better resolved, and the oscillations
between them can be considered as representative of the
equilibrium. On the contrary, at T = 365 K, well inside the
unfolding region, the jump to the intermediate fraction is
immediate, and the protein hardly visits the native basin again
before reaching the unfolded state.
From a structural point of view, the bottom panels of Figure 4

reveal that the native basin corresponds to a core spanning all
regions of the gpW secondary structure, from the beginning of
the first helix to the end of the second. The intermediate presents
a core structure encompassing residues 13 to 44 (from the
C-terminal part of the first helix to the N-terminal half of the
second helix), though the structure can include most of the first
helix, depending on the temperature. Considering the WSME
model's intrinsic tendency to enhance cooperativity,18,47 this
picture is consistent with a native-basin that moves with tempera-
ture which in the 1Dprojection appears as a twowells separated by
a small barrier. The unfolded basin is characterized by the loss of
β-strand structure, and presents non-negligible residual native-like
structure in all the loops and in theC-terminal part of the first helix.
Kinetics. Single-molecule analysis is very helpful to under-

stand mechanisms, but owing to the essential randomness of
each trajectory it does not allow extrapolations to ensemble
properties. To compare the predicted rates to the experimental
ones, we average ensembles of 400 single-molecule trajectories
(see Methods). The evolution of the average native fraction at
different final temperatures reveals the existence of two phases
for gpW: a slow one defining the folding/unfolding time and
corresponding to the final relaxation to equilibrium, and a faster
one, weakly dependent on the final temperature, and ∼2 orders
of magnitude faster than the former (see Supporting Information
Figure S4). The fast rate corresponds to an initial rearrangement
toward intermediate values of the reaction coordinate, and is less
significant than the slower one for the reasons discussed below.
The slower relaxation rates of gpW from MC kinetics display a

shallow chevron-like behavior (Figure 5A). The rates estimated
from a diffusive analysis on the free-energy surfaces of gpW agree
reasonably well with MC results both in the shape of the rate
versus temperature plot and in the observation of two phases. For
SH3, MC kinetics was performed only at a few chosen tempera-
tures and with a reduced ensemble (200 molecules), as it
involved very long simulation times. The resulting MC rates
agree quite well with those from the diffusive analysis, revealing a
significantly slower folding and steeper chevron (just a single
phase was observed).
The comparison of the normalized experimental amplitudes of

gpW7 (Figure 5B) with those from both computational methods
shows a remarkable agreement justifying that the relevant kinetic
information is contained in the slower phase. It also provides a
stringent check to the intrinsic consistency of the model; that is,
after fitting the model parameters to an equilibrium signal, we are
able to make correct predictions on the kinetics. The predicted
amplitude for SH3 is sharper than that of gpW, in tune with the
experimental observation of a sharper thermogram. The same
holds true, though in a weaker sense, for the rescaled rates
(Figure 5C). To compare with experimental results,7,38 we scale
the predicted rates with a phenomenological Arrhenius-like
temperature dependence on the diffusion coefficient with an
activation term of∼1 kJ/mol per residue for the diffusive analysis
and∼1.2 kJ/mol per residue for the MC kinetics.48 This method
also reproduces the observed relaxation rate of SH3 at 298 K
without invoking further assumptions.
The results from the kinetic analysis of the two proteins have

several important consequences. First, the agreement between
MC and diffusive analysis suggests that the number of native
residuesm is a good reaction coordinate for this protein. Second,
the diffusion along m, with coordinate-independent diffusion
coefficient, describes well the motion along the optimal pathway.
Third, broad thermograms and hence small barriers result in a
signature behavior on both the kinetics (observed as a shallow
chevron) and the amplitudes (transition spans a broader

Figure 4. Single-molecule behavior of gpW fromMC simulations. Three representative trajectories are reported, at different final temperatures uponT-
jumps from 240 K: (A�C) average number of native residues as a function of time; (D�F) corresponding detailed distributions of native and unfolded
residues along the protein, as functions of time. Structured regions appear as colored blocks.
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temperature range). Finally, both single-molecule and kinetic
analysis (Figure 4 and Figure 5) suggest that the fast rate in gpW
is associated to a rearrangement of the population in the vicinity of
the initial basin, affecting the shallow intermediate; this in turns
agrees with the picture emerging from Figure 2A that reveals great
plasticity of both the folded and unfolded basins upon temperature
changes. The fact that the faster rate was not observed in
experiments suggests that this may be a model-specific behavior,
hinting that the estimated barrier for gpW is an upper estimate.

’CONCLUSIONS

We have developed an extension of the WSME model with a
twofold goal: on the one hand, we wanted to see how much we
could “push” this simple model toward quantitative agreement
with experimental results, and to provide the experimentalists
with a simple and quantitative tool to interpret their data. On the
other hand, we wanted to apply the model to the difficult case of
the analysis of a weakly cooperative protein, to which the standard
models are of doubtful applicability, and to compare the perfor-
mance and predictions with those obtained for a standard two-

state protein. It is important, therefore, to comment on the scope
and limits of the present approach, while reviewing the main
results obtained.

The model neglects non-native interactions, so that its appli-
cation to proteins where a specific non-native interaction repre-
sents a crucial step in the folding pathway is questionable from
the very beginning. However, it is well recognized that Go-
models give reliable predictions in general, and that the intro-
duction of nonspecific, non-native interactions of moderate
strength does not affect the overall predictions (see ref 49 for a
recent review of the literature on the subject). This supports the
view that the funnel paradigm holds and that native interactions
play a fundamental role in determining mechanisms, while non-
native interactions just “fine-tune” the rates or the cooperativity.
We feel that this should hold good for the WSME-S model,
as well.

The main strength of the model, that makes it outstanding
among similar ones, is that every equilibrium average can be
calculated exactly, in less than a second; predictions that would
require decades of computer time with molecular dynamics or
Monte Carlo simulations, that employ more realistic atomic
potentials, can be made within a minute on a desktop PC.
However, such strength is intimately related to the main weak-
ness of the model: the fact that it just considers interactions
within a native island of continuous residues. This approximation
is expected to become more problematic for proteins where the
folding nucleus is sparse along the chain, and entails the forma-
tion of nonlocal contacts, encompassing sequence regions that
are still substantially unstructured; so, exceptions apart, we
expect that the model will have worse performance for longer
proteins, where it is more likely that nonlocal contacts enclosing
unfolded regions have an important role in the folding process.
We are studying possible improvements to the model to elim-
inate such limitation, but for the moment we suggest that
WSME-like models should not be used to interpret data when
there is strong experimental evidence for nonlocal interactions to
play a key role in the folding mechanism of a protein.

Despite the above considerations, it is evident that the
extended WSME-S model and the resulting analysis presented
here provide a surprising amount of information on the folding
mechanisms of two small proteins of similar size and thermo-
dynamic stability. It is important to note that the model was used
to fit only the DSC data of gpW and SH3, which carry informa-
tion on the partition function of the system under study: the rest
of our results are predictions, some of which need to be
experimentally verified. In parallel, we have shown that the
various experimental criteria empirically developed as evidence
for downhill folding—broad thermograms, dispersion in melting
temperatures from equilibrium probes, flat chevrons and hence
weak temperature dependence of relaxation rates, broader kinetic
amplitudes—emerge naturally from a predictive model, in those
cases where at most marginal barriers are present, and therefore
highlight the importance of a quantitative analysis employing
statistical models, and calls for further improvements in this
direction.

’ASSOCIATED CONTENT

bS Supporting Information. A more detailed presentation
of the theory is presented, together with the values of the model
parameters, and figures corresponding to the predictions of the
standardWSMEmodel, dispersion of the midpoint temperatures

Figure 5. Kinetic analysis. (A) Temperature dependence of the slower
rates of gpW (filled triangles, high-T to low-T jumps; open triangles,
low-T to high-T jumps) and SH3 (filled and open squares). The rates
from a 1D diffusive analysis on the free-energy surfaces for gpW and SH3
are also shown (dash-dotted and dashed lines, respectively). (B) gpW
experimental amplitudes from 11 K T-jumps (circles) together with
predicted amplitudes, following the same color code as panel A. The
continuous line is the MC-kinetics result. (C) Scaled rates vs tempera-
ture from different schemes for gpW and SH3 following the color code
of panel B. Filled red circle, experimental rate of SH3 at 298 K.
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for individual residues, and the fast and slow relaxation rates of
gpW. This material is available free of charge via the Internet at
http://pubs.acs.org.
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